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Abstract
Eye-tracking devices are convenient for interpreting human behaviors and intentions, enabling contactless
human–computer interaction, such as in medical image interpretation using eye-gaze tracking. Recent advances in
wearable eye-tracking devices have further allowed wearers to move freely and use them in regular activities.
However, gaze estimation from wearable devices tends to be less precise than that from standard stationary eye-
tracking devices. This is due to device design constraints and a lack of interpretation of the relationship between
the scene and the wearer. In this work, we propose to enhance the accuracy of gaze estimation in wearable eye-
tracking devices through a framework that incorporates two neural networks, CorNN and CalNN. The CorNN
corrects the bias induced by the distance between the observer and the gaze locations, primarily resulting from the
parallax and lens distortion effects. Meanwhile, the CalNN focuses on improving calibration specific to each
wearer. To collect precise training data for these networks, we have implemented an automated robotic data
collection pipeline. The proposed framework was demonstrated on the Pupil Labs Invisible eye-tracking device
and tested on 11 wearers, showing improved average gaze estimation accuracy for all wearers.

Keywords Head-mounted eye-tracking device � Neural network-based parallax correction � Accuracy
improvement � Pupil Labs Invisible

1 Introduction

Eye trackers are devices capable of estimating the gaze location of users by tracking their eye movements and
have become a vital tool for contactless human–computer interaction. The device’s output is a gaze location given
in pixel coordinates, either on a monitor screen or in a scene camera image. The recent applications of eye-
tracking technology have extended into various areas, including robot–human interaction in industrial settings
[1–5], driving monitoring systems [6–8], and enhancing the quality of automated medical image segmentation
and analysis by assessing visual attention [9–12]. Wearable eye-tracking devices have evolved to meet various
task requirements, minimizing usage constraints (e.g., eliminating the need for a chin rest) and streamlining the
calibration process (e.g., the Pupil Labs Invisible requires only a wearer-specific offset), enhancing user con-
venience and allowing for more seamless integration into daily activities [13, 14].

Wearable eye-tracking devices, such as the Pupil Labs Invisible [15] as illustrated in Fig. 1, have especially
received much attention due to their portability and versatility. However, challenges remain in developing
accurate wearable eye-tracking devices. In particular, adapting the device to the gaze characteristics inherent to
different wearers is imperative. Pupil Labs Invisible corrects gaze estimation bias by using a camera scene offset
that the wearer manually sets. This offset is added to the estimated gaze location to approximate the intended
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gaze. However, this simplified correction method does not account for errors due to the position of the eyes, lens
distortion of the scene camera, and parallax effects, which influence gaze estimation based on the wearer’s
distance from the target location [15–19].

In this study, we propose a correction framework for wearable eye-tracking devices using neural networks.
Figure 3 outlines the proposed framework. We used a neural network, CorNN, to correct the parallax and lens
distortion effect. Additionally, we use another network, CalNN, to perform wearer-specific calibration. To collect
precise training data for these networks, we implemented a robotic data collection system using the UR5e
manipulator (see Fig. 2). To validate the correction framework, we collected gaze data from 11 participants and
evaluated the gaze estimation accuracy. The proposed framework was evaluated by comparing the average gaze
estimation accuracy for all wearers against two baselines. The first baseline was the raw estimation made by the
eye-tracking device. The second baseline was a geometrical approach that compensates for the parallax effect,
which considers a calibration plane at a 2-meter distance. The proposed framework improved the average gaze
estimation accuracy for all wearers compared to both baselines. Specifically, it outperformed the raw estimation

Fig. 1 Configuration of the wearable eye-tracking device used in the framework (Pupil Labs Invisible). Red and blue
triangles represent the camera and wearer viewpoints, respectively. (https://pupil-labs.com/products/invisible/)

Fig. 2 Actual gaze location vs. gaze estimation. This figure illustrates the screen presented to the eye tracker’s wearers and
the schematic of the 3D gaze estimation and scene pose reconstruction during a record. Left, the application screen with four
ArUco markers, the visual target, and the gaze estimated by the eye-tracking device. Right, a top view of the scene with the
3D locations of the screen and the projection for the gaze estimation onto the screen plane
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made by the eye-tracking device and the geometrical approach that accounts for the parallax effect. This
demonstrates the effectiveness of the proposed correction framework in enhancing gaze estimation accuracy.

2 Related works

Head-stabilized and remote eye-tracking devices, such as the EyeLink 3000? and the Tobii Pro X2-30, are
widely adopted in research and are known for their remarkable gaze estimation accuracy. However, these
products are known to require meticulous calibrations and impose constraints on the user’s position to achieve
high accuracy. Additionally, they lack portability and must be mounted at a fixed location.

In contrast, wearable head-mounted eye trackers enable users to move freely during regular indoor and outdoor
activities [14, 20], such as the Pupil Labs Invisible eye tracker [15]. These devices resemble a pair of regular
eyeglasses (see Fig.1), but are equipped with two eye cameras installed in the frame pointed toward the wearer’s
eyes, capturing the pupil center location and corneal reflections. This allows for estimating the wearer’s gaze
location relative to the device. Additionally, a scene camera is mounted on the left side of the frame, capturing the
scene seen by the wearer and enabling the device’s self-localization in the wearer’s environment. The wearer’s
gaze location in the environment can thus be determined using the eye and scene cameras.

Despite their portability, existing wearable eye trackers suffer from mediocre gaze estimation accuracy due to
the parallax effect. The parallax effect is caused by a discrepancy between the scene camera’s field of view and
the wearer’s field of view, as illustrated in Fig. 1. Due to this discrepancy between the two observation points, the
estimated gaze locations observed from the scene camera differ from the actual gaze location of the wearer, and
that shift increases when the gaze location gets closer.

The parallax effect is widely prevalent in wearable eye-tracking devices, particularly in those equipped with a
single scene camera. Additionally, when the distance between the eyes and the scene is less than two meters, the
parallax effect often combines with camera lens distortion, leading to a significant degradation in gaze estimation
accuracy, as highlighted in [16, 17].

To address the parallax effects, [13] proposed a binocular head-mounted eye-tracking device and used the
estimated gaze direction of each eye to calculate the observation plane distance and compensate for the parallax
effect as a translation in the scene camera image. [21] suggested gaze estimation for compensating the parallax
effect induced by the gap distance between the display and a touch screen. [22] compensated the parallax effect
accounted with an SR Research EyeLink II by adding a head-mounted stereo camera synchronized with the eye
tracker for reconstructing the observer’s 3D scene. [23] presented a fully custom binocular head-mounted eye-
tracking device for 3D gaze estimation using an Intel RealSense D435 RGB-D camera. Recently, the Tobii Pro
Glasses 3 has integrated a built-in parallax effect compensation tool using an embedded stereo camera [24].
Although proving effective in improving gaze estimation, all these techniques are either device-specific or require
customized/additional hardware. Thus, these solutions could be inflexible and costly. We also note that limited
effort has been dedicated to improving gaze estimation software, which could offer a more versatile and cost-
effective solution to mitigate the impacts of parallax-related effects.

In this paper, we propose a purely software add-on framework for compensating gaze distortions relative to the
distance between a monitor screen and any head-mounted eye-tracking device that can provide a gaze estimation
as x- and y-coordinates within a scene camera image. This framework stands on a neural network for the device’s
distortion correction and a second neural network for supporting a user-specific calibration.
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3 Method

The eye-tracking device used in our study is the Pupil Labs Invisible [15] (Fig. 1), a lightweight wearable device
that requires only minimal calibration. The device allows a wearer-specific offset to be added to the x- and
y-coordinates of the 2D raw gaze location estimates, correcting biases inherent to individual wearers. This offset
is manually configurable via the Pupil Labs Invisible Companion application installed on the smartphone con-
nected to the eye-tracking device.

Consider the scenario where a person wearing the eye tracker gazes at a specific location on a monitor screen.
In this 3D scene, as illustrated in Figure 2, we define g as the gaze location estimated by the eye-tracking device
projected on the screen, n as the direction of the normal of the monitor screen plane, and t as the wearer’s actual
gaze location on the screen (ground truth for g). We used the two-dimensional raw gaze estimation from the
camera scene image in the wearer’s three-dimensional real-world scene. These quantities are measured in a three-
dimensional Cartesian coordinate system, with the origin being the center of the scene camera and the z-axis
aligned with the normal of the scene camera.

Our approach involves two neural networks: a correction neural network (CorNN) and a calibration neural
network (CalNN), as outlined in Fig. 3. The CorNN uses gaze estimation (g) and screen orientation (n) as inputs
to predict the actual gaze location (t). The CorNN is directly responsible for correcting the gaze estimation error
induced by the parallax effect and the scene camera lens distortion. The CalNN is the reciprocal of CorNN, which
predicts g from t and n. The CalNN is used to calculate wearer-specific offsets, an input parameter required by
CorNN that captures the estimation bias inherent to individual wearers. The details of this framework are
described in the following subsections.

3.1 Data collection

We acquire gaze estimations gi from a set of fixation points characterized by gaze target locations ti (ground
truth for gi) and screen orientations ni. We developed a graphical interface for data acquisition, as shown in Fig. 2.

The graphical interface displayed four ArUco markers and a visual target at each corner of the screen. The 3D
location of the screen was estimated using the four ArUco markers, while the wearers were instructed to focus on
the center of a visual target during the data collection. The visual target was a ring-shaped animated object
consisting of two rings, a cross, and a black dot in the center. The cross rotated continuously to facilitate visual
attention to the central point. The dot and the inner ring were resizable, and we adjusted their sizes to be distinctly
visible at the observing distance. We used the realtime-network-api [25] provided by Pupil Labs to access the data
from the eye tracker, including the scene camera view and a 2D raw gaze estimation in the scene camera
coordinates (in pixels). While collecting data, the wearer-specific offset on the Invisible companion device
remained at (0, 0), its default setting.

The training dataset was established on a single-wearer recording, referred to as Wearer 0. For this recording,
the wearer’s head was stabilized on a chin rest, and the monitor screen was mounted on a UR5e robot arm facing
the wearer (see Fig. 2). The robot arm was programmed to move the screen through a regular grid of 3D
waypoints sequentially, generating various fixation points within the field of view of the scene camera.
Upon arriving at each location within the grid, the robot arm remains stationary to record a new fixation

point. The eye-tracking device’s estimated 2D and 3D gaze locations and the eventual wearer’s head move-
ments were monitored during recording. When the wearer’s head and gaze were observed to have stabilized
according to the latest device output, we recorded an estimated 3D gaze location g,1 the real target location t, and
the camera’s relative orientation to the screen n. Upon completing this recording, the robot arm moved the screen

1 g was obtained by offsetting the latest gaze estimation using the average difference between the device’s outputs and the
actual target locations over a window of several samples, excluding outliers.
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to the next grid point. Using the robot arm, 10405 samples were recorded within a bounding box about 1.5m
wide, 1.2m high, and 1.5m deep, centered along the scene camera axis at about 500 mm from the wearer.

The testing dataset includes data from ten independent wearers. The recordings use regular monitor screens
mounted on a desk. Similar to the setting for training data collection, the wearers’ heads were stabilized on a chin
rest facing the screen. Instead of moving the screen to create different fixation points, the screen is now fixed. At
the same time, the visual target appears at various locations on the screen sequentially, drawing a grid of ten
columns by eight rows for each recorded distance. The recording is repeated for each wearer at distances 50, 65,
80, 100, and 130 cms from the screen, resulting in a record of 400 samples per test wearer. We also include the
data from Wearer 0 as a control group.

3.2 Preprocessing training data

The collected data are preprocessed before training the neural networks through the following steps.

3.2.1 Converting Cartesian coordinates to angular coordinates

Let the p be either g (gaze estimate) or t (target location). The first step of preprocessing is to convert p into
angular coordinates _p ¼ ðh;/; dÞ, where h and / as the angles between p and the normal of the camera (z-axis)
along the axes x and y, respectively, and d as the distance between p and the camera’s nodal point. This
conversion is necessary since the error tolerance of eye-tracking devices is associated with angles.

3.2.2 Augmenting the data set

We introduce an augmentation technique to our training dataset that artificially generates gaze estimation values
with various potential screen orientations. Suppose a fixation point (g, t, n) is recorded from the wearer,
where g becomes _g after conversion to angular coordinates. When a screen orientation nþ differs from n while the
target t remains at the same location, the eye-tracking device would return a gaze estimation gþ, whose angular
representation _gþ has the same / and h values as _g but a different distance dþ.

For each t, we generate 201 simulated nþ values such that their angles with line (O, t) remain below 60�, where
O is the center of the camera O ¼ ð0; 0; 0Þ. For each nþ, we compute its corresponding gþ, such that the / and h
components of its angular representation are the same as _g. Only its component d is modified so that gþ lies on
the plane ðt; nþÞ.

Fig. 3 The proposed framework for wearable eye tracker correction. The eye tracker’s camera scene and 2D gaze location
are collected using the device’s API. Additionally, 2D positions of ArUco markers on the screen are recorded to establish the
3D pose of markers and screen. The camera lens distortion is compensated on both the 2D camera scene images and
corresponding 2D gaze locations. The estimated 3D pose of markers and the screen was used for network inputs to correct
the 3D gaze location. Green elements are part of the gaze correction neural network. Orange elements are part of the
Calibration Neural Network. Dashed arrows show the data used as the ground truth output for the corresponding networks
during training. The 3D target location is present for training and calibration purposes only
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3.2.3 Adding the wearer-specific offset

The gaze estimation in angular coordinates _gi needs adjustment through the wearer-specific offset to account for
the biases inherent to individual wearers. We define the wearer-specific offset q as an angular shift along the x-
axis and y-axis of the camera, ðh;/Þ. This offset is a weighted average of the difference between _ti and _gi,
calculated according to Eq. (1),

q ¼ ðqh;q/Þ ¼
P

ixið _tih � _gih ; _ti/ � _gi/ÞP
ixi

; ð1Þ

where xi are weights that prioritize records closer to a defined point C ¼ ð0; 0; 2000Þ situated 2 ms from the
device, as suggested by the manufacturer.

xi ¼ 1� kti � Ck
maxj ktj � Ck

� �2

ð2Þ

We then compute the shifted gaze estimation set f _g0ig ¼ fðh0i;/
0
i; d

0
iÞg by adding ðqh;q/Þ to the gaze estimation in

angular coordinates _gi ¼ ðhi;/i; diÞ and re-projecting onto the screen plane,

_g0i ¼ ðh0i;/0
i; d

0
iÞ ¼ ðhi þ qh;/i þ q/; d

0
iÞ; ð3Þ

where d0i is calculated so that _g0i lies on the screen plane (t, n).

Remark 1 The primary issue of calculating the offset according to Eqs. (1) and (2) is that the offset puts much
more weight on samples close to the manufacturer-specified location C ¼ ð0; 0; 2000Þ than the remaining
samples. However, later on, we want our calibration process to consider samples from locations of different
distances equally, rather than overly focusing on a predetermined location. Therefore, when adjusting our
framework to the testing wearers, we use CalNN to calculate the wearer-specific offset that does not bias toward
any specific location (see Sect. 3.4).

3.3 Networks structure and training

The CorNN and CalNN have identical network architectures but are trained independently. The neural networks
comprise 20 fully connected layers with 500 hidden units. Each fully connected layer is followed by a leaky
rectified linear unit (ReLU) and dropout layer [26]. We applied a dropout rate of 0.3 to obtain robustness against
noisy measurements. A residual connection between the gaze coordinates and the neural network output was used
[27]. The residual connection of angular coordinate data provides robust correction by preventing angular
warping. CorNN takes ðn; _g0Þ as input and is trained to predict _t, while CalNN takes ðn; _tÞ as input and predicts _g0.
We use the mean squared error MSE (Eq. (4) and (5)) as the loss function for training, as follows:

LCorNNðn; _g0Þ ¼
X

i

ð _ti � CorNNðni; _g0iÞÞ
2; ð4Þ

LCalNNðn; _tÞ ¼
X

i

ð _g0i � CalNNðni; _tiÞÞ2; ð5Þ

where LCorNN and LCalNN are losses of CorNN and CalNN, respectively. The neural networks were implemented
in Python 3.7 using Keras 2.11.0. Training, validation, and testing were performed on a 12GB memory GTX
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Titan Xp workstation (NVIDIA Santa Clara, California, USA) over 3000 epochs with a batch size of 100,000
samples.

3.4 Framework usages

With the networks trained, the first step of adapting the framework to a new wearer k is to estimate their wearer-
specific offsets qk ¼ ðqkh;qk/Þ as introduced in Sect. 3.2.3. CalNN plays an important role in calculating the offsets
for new wearers. We collect a set of calibration fixation points on the new wearer
fðgk; nk; tkÞjk 2 ðSamples from kÞg, without manually setting any offsets on the companion application. fnk; tkgk
are used as inputs for the CalNN. The wearer-specific qk is estimated as the average difference between
CalNNðn; _tÞ and the angular representation of the captured fgkg:

ðqkh; qk/; �Þ ¼
1

m

X

k

CalNNðnk; _tkÞ � _gk; ð6Þ

See Fig. 4a for an illustration. Note that CalNN enables us to treat all samples with equal weights, not biasing
toward samples near any specific locations like Eq. (1) and (2).

We then offset the angular representation of _gk with the qk value to become _g0k. CorNN then takes ð _g0k; nÞ as
inputs and outputs a corrected gaze location estimate (see Fig. 4b ).

4 Evaluation

We evaluated the proposed framework for improving the accuracy of gaze estimation. A total of 20 wearers
participated in the testing experiment, named below Wearers 1 to 20. In addition, the results show the
performance of each studied method upon Wearer 0, who contributed to the training data. Wearer 0 is
presented here as a control test. His results are not included in cross-wearer measurements. The wearers’ heads
were stabilized on a chin rest facing the center of the screen. Unlike the training data collection procedure, the
testing experiment used regular monitor screens mounted on a desk: The screen was fixed while the visual target
appeared at different locations on the screen, stepping through a grid of ten columns by eight rows sequentially in
one recording. The recording is repeated for each wearer at distances 50, 65, 80, 100, and 130 cms from the
screen, resulting in 400 samples per test wearer. Wearers 0 to 10 had regular visions without correction and
no makeup. The Wearer 10 had regular vision and wore makeup. The Wearers 11 to 20 had vision
corrections of factor �2 or less. The Wearer 20 wore contact lenses during the experiment. We calculated the
testing wearers’ wearer-specific offsets with the help of the calibration network CalNN(t, n) as explained in Sect.
3.4. These wearer-specific offsets are then used with the CorNN to correct the gaze estimations of the testing
wearers. The gaze estimation accuracy for our framework is compared to the Baseline estimation and the

Fig. 4 Gaze calibration and correction networks (dashed arrows indicate the ground truth in training)
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CorPara methods. In the Baseline method, the wearer-specific offsets are calculated using Eq. (1) and the CorNN
correction is not applied. The CorPara uses the Baseline’s data and applies a correction as presented in [13] with
a calibration plane at a distance of 2 m (value determined to optimize the average correction upon every test
wearer). Both results are formalized in angular coordinates ðh;/; dÞ. The angular error of an estimated gaze
location c with a given ground truth location s is:

Angular Errorðc; sÞ ¼ kðhs;/sÞ � ðhc;/cÞk ð7Þ

In addition to comparing the proposed framework to the Baseline and CorPara methods, we have also conducted
an ablation study over the proposed network to observe the impact of each component on the whole framework’s
performance.

5 Results

Figure 6 shows the results of absolute angular error from the 21 participants. Figure 5 shows the average
accuracy obtained with the Baseline method, the parallax correction method CorPara, and the proposed cor-
rection framework CorNN over every testing wearer. Figure 5 shows the proposed method has improved the
average accuracy of every wearer, with an edge for wearers without vision correction and makeup. It is also
noticeable that contact lenses significantly degrade the device’s accuracy. Most wearers benefit from similar
improvements to the control test wearer, i.e., Wearer 0. CorNN does not always perform a better correction
compared with the CorPara, as with Wearers 6, 15, 18, and 20. However, it did not deteriorate the average
accuracy like CorPara did on Wearers 4, 5, 7, 8, 10, 11, 13, 14, and 16. In addition, even when
CorPara improves the average accuracy, it also introduces variability in some cases. Across wearers, CorNN
consistently offers a strong balance of low error and low variance, which is ideal in practical systems.

Figure 6 shows how the estimation accuracy changes as the distance between the wearer and the screen
changes. Figure 6a shows that the Baseline method’s accuracy improves with the distance within a short range of
[450, 1300] millimeters with improvement factors within about 2� 3�. This tendency is also observable in
CorNN’s results but with a lower impact, between 1� 2� (see Fig. 6d ). Figure 6c , CorPara slightly improves

Fig. 5 Per-wearer average angular error and standard deviation. Angular distance between a target and the gaze estimations
from the Baseline, CorPara, and CorNN methods. The overall test wearers (excluding Wearer 0) averages and standard
deviations were 2.5(1.6), 2.3(4.0), and 2.0(1.4), respectively
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the accuracy in mid-range and long-range distances for most of the wearers and at short-range distances for half of
them. However, it also deteriorates the accuracy for half of the wearers up to 1� their original values. Based on
Fig. 6e , the correction network had overall significantly increased the accuracy at a very short distance .1m for
most wearers, with an improvement between 0:5� and 2� and had a positive impact at a longer range for some of
them. This result matches our expectations since lens distortion and parallax effects are most significant in short
ranges. Thus, the benefit of applying the networks should be the most prominent. The only exceptions were the

Fig. 6 Angular distance
between a target and the
gaze estimations from the
Baseline method and the
output of the CorNN
framework. a Angular error
tendencies of the Baseline
method. b Angular error
tendencies of the CorPara.
c Improvement due to the
CorPara ((a) minus (b)).
d Angular error tendencies
of the CorNN. e Improve-
ment due to the CorNN
((a) minus (d))
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accuracy of the Wearer 10’s measurements at mid-range (around 1m) and several wearers at distances over 1m.
The deterioration varies between 0:1� and 0:3� approximately.

An ablation study has been conducted to evaluate the impact of each characteristic of the proposed framework
introduced in Sect. 3. Tables 1 and 2 report the average angular error variations upon all testing wearers of the
framework with various configurations as a percentage between the original and modified frameworks.

This ablation study showed that, on the one hand, the angular representation, the training data augmentation,
and the number of hidden units had the most significant performance impact; on the other hand, the choice of the
loss function, the use of the residual, and the number of layers contributed half as much to the framework’s
performance.

6 Conclusion

Our proposed method aims to improve head-mounted eye-tracking devices’ accuracy by attenuation for the
distortions implied essentially by the parallax effect, considering the distance between the observer and the gazed
object. This method consists of embedding gaze coordinates into the 3D real-world scene and using two neural
networks, one for correction and one for calibration. The method was trained on a single-wearer data set and
tested on eleven wearers using the Pupil Labs Invisible eye-tracking device. The results of those tests have shown
that the proposed method could significantly improve the device’s accuracy for every tested wearer compared to
the Baseline method. Further study will include multi-wearer training and few-shot learning techniques to
optimize the correction network to its current wearer, integrating the wearer-specific parameters into the neural
network architecture.
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